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Flare	loop	observations:	
imaging	and	spectroscopy	I

Bin	Chen	(New	Jersey	Institute	of	Technology)



Outline
• Coronal	loop	observations
• Hydrostatic	loops
• Hydrodynamic	loops

• Suggested	reading:	
• Achwanden’s book	Chapt 3-4



EUV	and	X-ray	loop	imaging

Hinode/XRT

SDO/AIA



Loop	observations

• Loops	delineate	path	of	magnetic	
fields

• Loops	have	variable	scales	in	length	
and	thickness

• Loops	are	everywhere
• But	loops	are	visible	in	EUV	and	X-
ray	only	if	they
• are	dense	enough,	
• are	thick	enough,	and
• have	the	right	temperature	for	the	
filter	band

loops	observed	by	TRACE
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Figure 3.16: Left panel: the effect of the variable column depth wz(s) measured parallel to
the line-of-sight z is illustrated as a function of the loop length parameter s, for a loop with
a constant diameter w. Right panel: the effect of the inclination angle θ of the loop plane on
the inferred density scale height λ(θ) is shown. Both effects have to be accounted for when
determining the electron density ne(s) along the loop.

with physical loop models. In this section we discuss 3 cases: (1) an intense single
loop, (2) a faint loop embedded in the background corona, and (3) a statistical distribu-
tion of loops embedded in the background corona. All cases are highly relevant to the
analysis of Yohkoh/SXT, SoHO/EIT, SoHO/CDS, and TRACE images.

3.5.1 Bright Single Loop

What we mean with a bright loop is that the observed brightness of the loop structure
has sufficient contrast to the background (at least 10:1) so that the background can
be neglected and ignored in the data analysis. However, even if we manage to find
an isolated bright loop that is most suitable for a quantitative analysis, there are still
a number of effects that need to be considered: (1) projection effects, (2) loop plane



Effect	of	instrument	response

temperature component within the margin of error provided by
the Monte Carlo runs.

After the eruption, at 02:03 UT, there is a large loop seen in
XRT images that does not exist before the eruption, as shown
in Figure 2, indicating that some heating has taken place on this
loop as well. Figure 7 shows XRT/Be-thin, AIA/94, and AIA/
131 Å images and a DEM for 02:07 UT, a time after the
eruption when a full set of XRT images is available. During

this time, the large loop that extends southward of the erupting
loop that is shown in Figure 2 is still clearly visible in the XRT
images. The only AIA filter where the loop is visible is the
94 Å channel. It is not visible in either the 335 Å channel (not
shown) or the 131 Å channel.
As in Figure 6, the DEM is calculated using averaged

intensities in the white box. We show a DEM from near the
loop top, but DEMs from other locations are similar. The DEM

Figure 6. Top row: images and DEM for 01:39 UT, during the eruption. Bottom row: images and DEM for 00:58 UT, before the eruption. Images are scaled the same
on the top and the bottom rows. The DEMs are calculated by averaging the pixels in the white boxes marked on the images. The solid lines in the DEM plots show the
DEM calculated from the averaged intensities. Dark gray, gray and light gray boxes on the DEM plot encompass 95%, 80% and 50% of the Monte Carlo solutions,
respectively.

Figure 7. Top row: images and DEM for 02:07 UT, during the eruption. Bottom row: images and DEM for 00:58 UT, before the eruption. Images are scaled the same
on the top and the bottom rows. The DEMs are calculated by averaging the pixels in the white boxes marked on the images. The solid lines in the DEM plots show the
DEM calculated from the averaged intensities. Dark gray, gray and light gray boxes on the DEM plot encompass 95%, 80% and 50% of the Monte Carlo solutions,
respectively.
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SDO/AIA

Hinode/XRT

Reeves	et	al	2015



Electron-beam-conducting	loops	invisible	in	EUV

Chen	et	al.	2013

Type	III	radio	burst	centroids

Frequency

HXR	footpoint

Acceleration	site

Sun

Upward	
electron	beams

12-25	keV

𝑛" =
$/&
'(')

&
≈ 5×10( cm-3,	T	~	1	MK	(from	density	scale	height	

measurement),	but	no	EUV	loop	counterparts?	
• Probably	very	thin	loops	with	d	<	100	km



Hydrostatic	equilibrium
• Gas	pressure	balanced	only	by	gravitational	force

68 CHAPTER 3. HYDROSTATICS

mass in the solar corona. The solar gravitation g⊙ (i.e., the acceleration constant due
to solar gravity; in Newton’s law F = mg⊙), is defined by

g⊙ =
GM⊙

R2
⊙

= 2.74 × 104 (cm s−2) (3.1.2)

where R⊙ = 6.9551× 1010 cm is the solar radius. Thus, with Eqs. (3.1.1) and (3.1.2)
we have the gravitational potential,

εgrav(r) = −mg⊙

(
R2

⊙
r

)
. (3.1.3)

The gravity force Fgrav is derived from the gradient of the gravitational potential,

Fgrav(r) = −dεgrav(r)
dr

= −mg⊙

(
R2

⊙
r2

)
. (3.1.4)

which is just Fgrav(r = R⊙) = −mg⊙ at the solar surface, r = R⊙. The pressure
p is defined as a force F per area dA, having the physical dimension of (dyne cm−2).
A pressure gradient dp/dr thus has the physical dimension of a force per volume (i.e.,
dp/dr = F/(dA × dr) = F/dV ), which can be expressed as a product of the force
with a particle volume density n (cm−3), dp/dr = F × n. We can, therefore, deduce
the pressure equilibrium or momentum equation by multiplying the force Fgrav(r) in
Eq. (3.1.4) with the particle density n,

dp

dr
(r) =

dpgrav(r)
dr

= Fgrav(r)n(r) = −mn(r)g⊙
(

R2
⊙

r2

)
. (3.1.5)

In plasma physics and fluid dynamics it is customary to define a mass density ρ = mn,
where m (g) is the average particle mass and n (cm−3) the particle density. For a fully
ionized gas, such as the solar corona, the mass density is composed of the electron
density ne and ion density ni,

ρ = mn = mene + mini ≈ µmHne , (3.1.6)

where µ is the molecular (or mean atomic) weight of the ion, mH the hydrogen mass,
while the electron mass me = mH/1836 can be neglected for a neutral plasma with
ne ≈ ni. It is sufficient to include only the most abundant two ions (i.e., hydrogen and
helium), because all heavier elements have an abundance of many orders of magnitude
lower (Table 1.2). In the solar corona, which consists of H:He=10:1, the molecular
weight (with µ = 1 for hydrogen 1H and µ = 4 for 4He) is

µ =
10 × 1 + 1 × 4

11
≈ 1.27 . (3.1.7)

We can now write the momentum equation (Eq. 3.1.5) in terms of the coronal electron
density ne(r) by inserting the definition of mn (Eq. 3.1.6),

dp

dr
(r) = −µmHne(r)g⊙

(
R2

⊙
r2

)
. (3.1.8)
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𝜇 ≈ 1.27
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To solve this momentum equation, we need a relation between the pressure p(r) and
the electron density ne(r), which is provided by a thermodynamic equation of state
(e.g., the ideal gas equation, p = nkBT ). For the coronal pressure, we have to add the
ion pressure pi and electron pressure pe, so the pressure is twice that of the electron
gas (assuming ne ≈ ni for the corona),

p(r) = 2ne(r)kBTe(r) , (3.1.9)

The electron density ne(r) can then be substituted into the momentum equation (3.1.8)
from the ideal gas equation (Eq. 3.1.9),

dp

dr
(r) = −p(r)

µmHg⊙
2kBTe(r)

(
R2

⊙
r2

)
. (3.1.10)

We introduce the more practical height variable h above the solar surface,

h = r − R⊙ , (3.1.11)

so that we can express the momentum equation as a function of height h,

dp

dh
(h) = −p(h)

µmHg⊙
2kBTe(h)

(
1 +

h

R⊙

)−2

. (3.1.12)

For near-isothermal coronal structures where the approximation Te(h) ≈ const holds,
we can separate the pressure variable p(h) in the momentum equation (3.1.12),

dp

p
= −dh

µmHg⊙
2kBTe

(
1 +

h

R⊙

)−2

= − dh

λp(Te)

(
1 +

h

R⊙

)−2

, (3.1.13)

and integrate both sides of the equation,

∫ p

p0

dp

p
= −

∫ h

h0

1
λp(Te)

(
1 +

h

R⊙

)−2

dh , (3.1.14)

which has a near-exponential solution,

p(h) = p0 exp

[
− (h − h0)

λp(Te)(1 + h
R⊙

)

]
, (3.1.15)

where the pressure scale height λp(T ) is defined by Eq. (3.1.12) as

λp(Te) =
2kBTe

µmHg⊙
≈ 4.7 × 109

(
Te

1 MK

)
(cm) . (3.1.16)

Near the solar surface (i.e., for h ≪ R⊙), the pressure drops off exponentially ac-
cording to Eq. (3.1.15) in an isothermal atmosphere. For relatively small loops (i.e.,
for h ≪ λp(Te)), even an isobaric approximation (p ≈ const) can be used. Since the
pressure scale height or hydrostatic scale height λp scales linearly with temperature Te,
the isobaric assumption is a quite valid approximation for near-isothermal flare loops.
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single	particle

p(r+dr)

p(r)
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Pressure	scale	height
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To solve this momentum equation, we need a relation between the pressure p(r) and
the electron density ne(r), which is provided by a thermodynamic equation of state
(e.g., the ideal gas equation, p = nkBT ). For the coronal pressure, we have to add the
ion pressure pi and electron pressure pe, so the pressure is twice that of the electron
gas (assuming ne ≈ ni for the corona),

p(r) = 2ne(r)kBTe(r) , (3.1.9)
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For	ℎ ≪ 𝑅⨀
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Near the solar surface (i.e., for h ≪ R⊙), the pressure drops off exponentially ac-
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for h ≪ λp(Te)), even an isobaric approximation (p ≈ const) can be used. Since the
pressure scale height or hydrostatic scale height λp scales linearly with temperature Te,
the isobaric assumption is a quite valid approximation for near-isothermal flare loops.

Some	remarks

• p	~	const.	for	small	variations	of	h	or	large	T
• Close	to	surface	p	decrease	exponentially	with	
height
• For	T	=	1	MK	the	exponential	approx.	underestimates	the	
pressure	by	~23%	at	h=100	Mm.

• For	isothermal	case,	same	height	variation	for	
plasma	density:	𝑝 ∝ 𝜌

For	ℎ ≪ 𝑅⨀



OK,	how	about	B	fields?

• A	magnetic	field	𝑩 exerts	Lorenz	force	𝒋×𝑩,	where	
𝒋 is	the	current	density
• The	force	balance	now	is

• Does	the	equilibrium	solution	differ	from	the	
hydrostatic	one?

𝛻𝑝 = 𝜌𝒈 + 𝒋×𝑩



Hydrostatic	equilibrium	with	B	fields
• Force	balance:	𝛻𝑝 = 𝜌𝒈 + 𝒋×𝑩

• Maxwell’s	equation:	𝛻×𝑩 = @
A
B𝑬
BD
+ 4𝜋𝒋

• In	nonrelativistic	limit,	we	can	neglect	
the	@

A
B𝑬
BD

term,	since

• So	we	have	𝒋 = 𝛻×𝑩/4𝜋 (Ampere’s	
Law)
• Scalar	product	by	𝑩 to	both	sides:

176 CHAPTER 5. MAGNETIC FIELDS

5.1 Electromagnetic Equations

5.1.1 Maxwell’s Equations

Classical electrodynamics (e.g., Jackson 1962) relates the magnetic field B to the elec-
tric field E by Maxwell’s equations (here in cgs units),

∇ ·E = 4πρE (5.1.1)

∇ · B = 0 (5.1.2)

∇× E = −1
c

∂B
∂t

(5.1.3)

∇× B =
1
c

∂E
∂t

+ 4πj (5.1.4)

where ρE is the electric charge density, j the electric current density, and c the speed
of light. In an astrophysical context, the magnetic induction B is referred to as the
magnetic field, while the standard definition of the magnetic field is H = B/µ (i.e.,
the magnetic induction B divided by the magnetic permeability µ). The electric field E
is related to the electric displacement, D = ϵE, by the permittivity of free space ϵ. For
astrophysical plasmas, these constants have values close to that in a vacuum, which is
near unity in Gaussian (cgs) units (i.e., µ ≈ 1 and ϵ ≈ 1). Note also that the term for
the current density is (4π)j in Maxwell’s and related equations if the current density
is measured in electromagnetic units (emu), but amounts to (4π/c)j if measured in
electrostatic units (esu) (see Appendix C).

5.1.2 Ampère’s Law

A fundamental assumption in magneto-hydrodynamics is the nonrelativistic approxi-
mation, in the sense that plasma motions with speed v0 are much slower than the speed
of light c,

v0 ≪ c . (5.1.5)

This nonrelativistic approximation allows us to neglect the term (1/c)(dE/dt) in Max-
well’s equation (5.1.4), because it is much smaller than the term (∇× B),

1
c

∂E
∂t

≈ 1
c

E0

t0
≈

(v0

c

) E0

l0
≪ B0

l0
≈ (∇× B) , (5.1.6)

where we attributed the plasma speed v0 ≈ l0/t0 to a typical length scale l0 and time
scale t0, that is given by the curl-operator (∇ = d/dl ≈ 1/l0), and assumed that the
typical electric E0 and magnetic field B0 are of the same order. Thus the simplified
Maxwell equation (5.1.4) yields the following definition for the current density in the
nonrelativistic approximation,

j =
1
4π

(∇× B) (5.1.7)
𝑩 G 𝛻𝑝 − 𝜌𝑩 G 𝒈 = 𝑩 G 𝛻×𝑩 ×𝑩 /4𝜋

Lorentz	force.	What	is	its	direction?



Perpendicular	to	𝑩

A	note	on	the	Lorentz	force

𝒋×𝑩 =
𝛻×𝑩 ×𝑩
4𝜋 = −𝛻

𝐵&

8𝜋 +
1
4𝜋 𝑩 G 𝛻 𝑩

Magnetic	pressure

Second	term	can	be	further	decomposed	into	two	terms:	

1
4𝜋 𝑩 G 𝛻 𝑩 =

𝐵
4𝜋 𝒃L G 𝛻 𝐵𝒃L = 𝒃L𝒃L G 𝛻

𝐵&

8𝜋 +
𝐵&

4𝜋 𝒃L G 𝛻 𝒃L

Magnetic	pressure	gradient	
parallel	to	B,	which	cancels	the	
component	in	the	first	term Magnetic	tension

= −
𝐵&

4𝜋
𝒓N
𝑟A

𝒋×𝑩 =
𝛻×𝑩 ×𝑩
4𝜋 = −𝛻P

𝐵&

8𝜋 −
𝐵&

4𝜋
𝒓N
𝑟A

For	a	dipole	field,	the	two	terms	cancel	
each	other



Hydrostatic	equilibrium	with	B	fields

• Same	equation	as	the	hydrostatic	case
• Same	vertical	dependence	of	density
and	pressure

• However,	each	loop	can	have	its	own	T	and	
𝜆,	so	they	can	behave	differently

• Each	loop	acts	like	a	mini	solar	
atmosphere!

−𝐵
𝑑𝑝
𝑑𝑠 − 𝜌𝐵𝑔 cos 𝜃 = 0

𝑑𝑝
𝑑𝑧 + 𝜌𝑔 = 0

𝑑𝑠 = 𝑑𝑧/ cos 𝜃

𝑩 G 𝛻𝑝 − 𝜌𝑩 G 𝒈 = 𝑩 G
𝛻×𝑩 ×𝑩
4𝜋 = 0



Hydrostatic	isothermal	density	model

PS	#2	question	#2

Flare	loops:
Enhanced	density

+
Larger	scale	heights

Quiet	K	corona	is	well	
approximated	by	an	exponential	
density	model



More	realistic	hydrostatic	loops
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density estimates when closed with the equation of state, and for coronal energy budget when
integrated on relevant volumes and times.

Scaling laws have been extended to loops higher than the pressure scale height (Serio et al.,
1981) and limited by the finding that very long loops become unstable (Wragg and Priest, 1981).
According to Antiochos and Noci (1986), the cool loops belong to a di↵erent family and are low-
lying, and may eventually explain an evidence of excess of emission measure at low temperature.

The numerical solution of the complete set of hydrostatic equations allowed to obtain detailed
profiles of the physical quantities along the loop, including the steep transition region. Figure 13
shows two examples of solution for di↵erent values of heating uniformly distributed along the loop.
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Figure 13: Distributions of temperature, density, and pressure along a hydrostatic loop computed from
the model of Serio et al. (1981) for a high pressure loop (AR) and a low pressure one (Empty) with heating
uniformly distributed along the loop.

Reale (1999) and Aschwanden and Nitta (2000) investigated in detail the e↵ect of hydrostatic
weighting on the loop visibility and on the vertical temperature structure of the solar corona.

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-5
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density estimates when closed with the equation of state, and for coronal energy budget when
integrated on relevant volumes and times.

Scaling laws have been extended to loops higher than the pressure scale height (Serio et al.,
1981) and limited by the finding that very long loops become unstable (Wragg and Priest, 1981).
According to Antiochos and Noci (1986), the cool loops belong to a di↵erent family and are low-
lying, and may eventually explain an evidence of excess of emission measure at low temperature.
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uniformly distributed along the loop.

Reale (1999) and Aschwanden and Nitta (2000) investigated in detail the e↵ect of hydrostatic
weighting on the loop visibility and on the vertical temperature structure of the solar corona.
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density estimates when closed with the equation of state, and for coronal energy budget when
integrated on relevant volumes and times.

Scaling laws have been extended to loops higher than the pressure scale height (Serio et al.,
1981) and limited by the finding that very long loops become unstable (Wragg and Priest, 1981).
According to Antiochos and Noci (1986), the cool loops belong to a di↵erent family and are low-
lying, and may eventually explain an evidence of excess of emission measure at low temperature.

The numerical solution of the complete set of hydrostatic equations allowed to obtain detailed
profiles of the physical quantities along the loop, including the steep transition region. Figure 13
shows two examples of solution for di↵erent values of heating uniformly distributed along the loop.
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Density
Pressure

Simulation	by	Serio	et	al.	1981
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chosen sizes, densities (in the range of ne = 1 − 5 × 108 cm−3), and temperatures (in
the range Te = 0.5 − 5.0 MK), superimposed on the background corona. The differ-
ential emission measure distributions of both the 100 loops and the background corona
are shown in the bottom right panel of Fig. 3.17. Obviously the forest of loops forms
a diffuse inhomogeneous background that is hard to distinguish from the background
corona. Also in the differential emission measure distribution, where the 100 loops
dominate, none of the 100 loops can be separated properly. Multi-temperature analysis
is done with a limited number of SXR and EUV lines [e.g., from SERTS (Brosius et
al. 2000) or from SoHO/CDS (Schmelz et al. 2001)], which show a relatively broad
differential emission measure distribution. Generally, the contrast between the bright-
est loop feature and the background corona is weaker the broader the temperature. This
is expected for the situation shown in Fig. 3.17 (bottom panel). It is, therefore, recom-
mended only to perform multi-temperature analysis on loops with strong contrast, or
to use narrow-band filters (e.g., EIT or TRACE) to benefit from a better temperature
discrimination (Aschwanden 2002a).

3.6 Hydrostatic Solutions and Scaling Laws

In the previous sections we described all coronal loops with an isothermal approxi-
mation to make the essential aspects of the multi-temperature structure of the corona
transparent. However, while the isothermal approximation works fine for the coronal
segments of loops, it breaks down at the footpoints of the loops, in the transition region
and chromosphere. When we talk about hydrostatic solutions, we mean a stationary
solution of the density ne(s) (or pressure pe(s)) and temperature profile Te(s) that
is in hydrostatic equilibrium and matches the chromospheric (at s = 0) and coronal
boundary conditions (at s = L).

A hydrostatic solution has to fulfill both the momentum equation and the energy
equation,

dp

ds
− dpgrav

dr
(
dr

ds
) = 0 , (3.6.1)

EH(s) − ER(s) − 1
A(s)

d

ds
A(s)FC(s) = 0 . (3.6.2)

where the energy equation (expressed in conservative form) contains a heating rate
EH(s) and two loss terms, the radiative loss ER(s) (defined in Eq. 2.9.1) and the con-
ductive loss term, which is expressed as the divergence of the conductive flux FC(s),

FC(s) =
[
−κT 5/2(s)

dT (s)
ds

]
= −2

7
κ

d

ds

[
T 7/2(s)

]
, (3.6.3)

with κ = 9.2× 10−7 (erg s−1 cm−1 K−7/2) the Spitzer conductivity. The least known
term is the volumetric heating rate EH(s) along the loop, which crucially depends on
assumptions for the physical heating mechanism. Many previous loop models assumed
uniform heating, EH(s) = const (e.g. Rosner et al. 1978a), for the sake of simplicity.

Heating Radiation Conduction

Need	to	account	for	temperature	change	
from	chromosphere	to	transition	region	
to	corona.	

Small	T	variation



Are	AR	loops	in	hydrostatic	equilibrium?

• TRACE/AIA	171	images	are	sensitive	to	~1	MK	plasma
• Hydrostatic	equilibrium:	𝑛 ℎ = 𝑛)exp	(−

_`_a
bc

) with	𝜆e ~
47	Mm
• The	image	intensity	is	proportional	to	𝑛&,	so

intensity	scale-height	is	𝜆f	~𝜆hi~24Mm

• Intensity	decreases	by	almost	40%	every	24	Mm

• Is	this	what	we	usually	observe	for	AR	loops?

𝐼(ℎ) ≈ 𝐼)exp	[−
2 ℎ − ℎ)

𝜆e
]



Observation	of	an	“old”	AR	loop	system
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Figure 3.26: Three different projections of the stereoscopically reconstructed 30 loops of AR
7986. The loop segments that were traced from the 96-Aug-30, 171 Å image are marked with
thick solid lines, while the extrapolated segments (marked with thin solid lines) represent circular
geometries extrapolated from the traced segments. The three views are: (1) as observed from
Earth with l0, b0 (bottom right panel); (2) rotated to north by b′0 = b0 − 100◦ (top right panel);
and (3) rotated to east by l′0 = l0 + 97.2◦ (corresponding to −7.2 days of solar rotation; bottom
left panel). An EIT 171 Å image observed at the same time (−7.2 days earlier) is shown for
comparison (top left panel), illustrating a similar range of inclination angles and loop heights
as found from stereoscopic correlations a week later. The heliographic grid has a spacing of 50

degrees or 60 Mm (Aschwanden et al. 1999a).

Aschwanden et	al.	1999

EIT	171



Hydrostatic	AR	loops
3.9. OBSERVATIONS OF HYDROSTATIC LOOPS 111

0 5 10 15

1000

2000

3000

4000

195 A

Loop #20

0 5 10 15

2000

4000

6000

195 A

Loop #21

0 5 10 15

500

1000

1500

2000

195 A

Loop #26

0 5 10 15

500

1000

1500

2000

195 A

Loop #27

0 5 10 15

500

1000

1500

195 A

Loop #29

0 5 10 15

500

1000

1500

195 A

Loop #30

0 5 10 15

500

1000

1500

2000

195 A

Loop #31

0 5 10 15

1000

2000

3000

195 A

Loop #32

0 5 10 15

100

200

300

400

284 A

0 5 10 15

100

200

300

400

500

600

700

284 A

0 5 10 15

50

100

150

284 A

0 5 10 15

50

100

150

284 A

0 5 10 15

50

100

150

284 A

0 5 10 15

50

100

150

284 A

0 5 10 15

50

100

150

200 284 A

0 5 10 15

100

200

300

284 A

Figure 3.27: Cross-sectional flux profiles of coronal loops in AR 7986 observed with
SoHO/EIT in 171 Å and 195 Å. The loop coordinate s has been stretched out in the vertical
direction. The background flux profile across a loop cross section is modeled with a cubic spline
fit, the grey areas mark the loop-associated EUV fluxes (Aschwanden et al. 2000a).
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Figure 3.28: The density profiles ne(s) inferred from the loop-associated fluxes shown in
Fig. 3.27 are shown with crosses, while an exponential density profile (solid line) is fitted to
infer the density scale height λn and the associated scale height temperature T λ

e (Aschwanden
et al. 2000a).
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Scaling	laws	for	hydrostatic	loops

Simplification/assumptions:
• Hydrostatic	equilibrium
• Symmetry	w.r.t.	apex
• Length	shorter	than	𝜆m:	nearly	
constant	pressure	p
• Heat	deposited	uniformly	
along	loop	(h/Q/E=const.)

32 Fabio Reale

In more detailed modeling, it has been recently shown that non-local thermal conduction may
lengthen considerably the conduction cooling times and may enhance the chances of observing hot
nanoflare-heated plasma (West et al., 2008).

Alternative approaches to single or multiple loop modeling have been developed more recently,
thanks also to the increasing availability of high performance computing systems and resources.
A global “ab initio” approach was presented by Gudiksen and Nordlund (2005) and by Hansteen
et al. (2007) (see also Yokoyama and Shibata, 2001, for the case of a flare model). They model
a small part of the solar corona in a computational box using a three-dimensional MHD code
that span the entire solar atmosphere from the upper convection zone to the lower corona. These
models include non-grey, non-LTE (Local Thermodynamic Equilibrium) radiative transport in the
photosphere and chromosphere, optically thin radiative losses, as well as magnetic field-aligned
heat conduction in the transition region and corona. Although such models still cannot resolve
well fine structures, such as current sheets and the transition region, they certainly represent the
first important step toward fully self-consistent modeling of the magnetized corona.

4.1.1 Monolithic (static) loops: scaling laws

The Skylab mission remarked, and later missions confirmed (Figure 9), that many X-ray emitting
coronal loops persist mostly unchanged for a time considerably longer than their cooling times by
radiation and/or thermal conduction (Rosner et al., 1978, and references therein). This means
that, for most of their lives, they can be well described as systems at equilibrium and has been the
starting point for several early theoretical studies (Landini and Monsignori Fossi, 1975; Gabriel,
1976; Jordan, 1976; Vesecky et al., 1979; Jordan, 1980). Rosner et al. (1978) devised a model of
coronal loops in hydrostatic equilibrium with several realistic simplifying assumptions: symmetry
with respect to the apex, constant cross section (see Section 3.2.1), length much shorter than the
pressure scale height, heat deposited uniformly along the loop, and low thermal flux at the base
of the transition region, i.e., the lower boundary of the model. In these conditions, the pressure is
uniform all along the loop, which is then described only by the energy balance between the heat
input and the two main losses mentioned above. From the integration of the equation of energy
conservation, one obtains the well-known scaling laws

T0,6 = 1.4 (pL9)
1/3 (8)

and
H�3 = 3p7/6L�5/6

9 , (9)

where T0,6, L9, and H�3 are the loop maximum temperature T0, length L and heating rate per
unit volume H, measured in units of 106 K (MK), 109 cm, and 10–3 erg cm–3 s–1, respectively.
These scaling laws were found in agreement with Skylab data within a factor 2.

Analogous models were developed in the same framework (Landini and Monsignori Fossi, 1975)
and equivalent scaling laws were found independently by Craig et al. (1978), and more general ones
by Hood and Priest (1979). They have been derived with a more general formalism by Bray et al.
(1991). Although scaling laws could explain several observed properties, some features such as
the emission measure in UV lines and the cool loops above sunspots could not be reproduced
and, although the laws have been questioned a number of times (e.g., Kano and Tsuneta, 1995)
in front of the acquisition of new data, such as those by Yohkoh and TRACE, they anyhow
provide a basic physical reference frame to interpret any loop feature. For instance, they provide
reference equilibrium values even for studies of transient coronal events, they have allowed to
constrain that many loop structures observed with TRACE are overdense (e.g., Lenz et al., 1999;
Winebarger et al., 2003a, Section 4.1.2) and, as such, these loops must be cooling from hotter
status (Winebarger and Warren, 2005) (see Section 3.3.3, and so on). They also are useful for

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-5

Rosner et	al	1978

• Known	as	“RTV”	scaling	laws	(after	
Rosner,	Tucker,	and	Vaiana)

• Matches	observations	from	Skylab	
X-ray	data	within	a	factor	of	2

• Hydrostatic	equilibrium	describes	
some	coronal	loops	fairly	well



Multi-thermal	corona	and	
hydrostatic	weighting	bias
• Measured	EUV/X-ray	intensity	
have	contribution	from	multiple	
loops	along	LOS

• Relative	contribution	to	intensity	
from	hotter	loops	is	greater	at	
increasing	heights
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Figure 3.3: Illustrating scale height-weighted contributions of hydrostatic loops or open flux-
tubes to the emission measure observed along two line-of-sights above the solar limb. The left
line-of-sight at a height of h = 100 Mm above the limb samples significant emission from
the 3 loops with temperatures of 1.5−2.5 MK. The right line-of-sight at a height of h = 200
Mm above the limb samples significant emission only from the hottest loop with T = 2.5 MK,
(Aschwanden & Nitta 2000).

the emission measure, and thus any temperature analysis of the averaged flux is subject
to this height-dependent density weighting, which we call the hydrostatic weighting
bias (Aschwanden & Nitta 2000).

Let us quantify this hydrostatic weighting bias effect. In the isothermal approxi-
mation (Te(h) = const, for the coronal segment of a single fluxtube), neglecting the
variation of gravity with height (h ≪ R⊙), we obtain an exponential density profile
ne(h) as a function of height h (from Eqs. 3.1.15 and 3.1.9),

ne(h, T ) = ne0 exp
(
− h

λp(T )

)
. (3.2.1)

The emission measure EM(T ) sums up all the density contributions n2
e(z) along a

given line-of-sight z at a particular temperature T ,

EM(T ) =
∫

n2
e(T, z)dz . (3.2.2)

The flux Fi or intensity measured by a detector or filter i is given by the product of the
differential emission measure distribution dEM(T )/dT and the instrumental response

Aschwanden &	Nita	2000
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Figure 3.8: The multi-hydrostatic differential emission measure distributions dEM(T, h)/dT

are shown for different heights h, computed from parameters measured in Aschwanden & Acton
(2001). Note the systematic increase of the peak temperature from TEM = 1.77 MK at the
coronal base (h = 0) to TEM = 2.76 MK at a height of h = 550 Mm, which is a manifestation
of the hydrostatic weighting bias.

geometric consideration yields the following height dependence h′(z) for a point z on
the line-of-sight axis that passes the limb at a lowest height h (at location z = 0),

h′(z) =
√

(R⊙ + h)2 + z2 − R⊙ (3.3.6)

(see Fig. 3.7). Combining Eqs. (3.3.3−6) and Eq. (3.2.1) we obtain then the following
differential emission measure dEM(h, T )/dT for a position h above the limb, inte-
grated along the line-of-sight z,

dEM(h, T )
dT

=
∫ ∞

−∞

n2
e(h0)√
π σT

exp
[
−2[h′(z) − h0]

λp(T )
− (T − T0)2

σ2
T

]
dz . (3.3.7)

Examples of such dEM(T ) distributions inferred from Yohkoh/SXT data are shown
for different heights h in Fig. 3.8. The peak of the dEM(T ) distributions shifts sys-
tematically to higher temperatures T0 with increasing altitude h, due to the hydrostatic
weighting bias.

Multiplying the differential emission measure distribution dEM(h, T )/dT with
the instrumental response function RW (T ) = dFW /dEM(T ) of a filter with wave-
length W and integrating over the temperature range we then directly obtain the flux
FW (h) at a given height h,

FW (h) =
∫ ∞

0

dFW (h)
dEM(h, T )

dEM(h, T )
dT

dT =
∫ ∞

0
RW (T )

dEM(h, T )
dT

dT .

(3.3.8)
It is instructive to visualize the column depth of a hydrostatically stratified atmosphere
as a function of the distance to the Sun’s center, because the electron density can then
directly be estimated from this column depth and an observed emission measure. We

Aschwanden &	Acton	2001
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uniform heating (sH >> L)

Figure 3.29: Differential emission measure (DEM) distributions of hydrostatic loops, calcu-
lated for a loop length of L = 40 Mm, a heating scale height of sH = 20 Mm (left) and uniform
heating (right), for looptop temperatures of T = 1, 3, 5, 10 Mm, and for expansion factors of
Γ = 1, 2, 5, 10. The histograms represent the numerical hydrostatic solutions, the curves the
analytical approximations (Aschwanden & Schrijver 2002).

the thin transition region segment. The absolute values of the loop DEMs shown in
Fig. 3.29 illustrate the dramatically enhanced weight of hot hydrostatic loops in DEM
distributions, which essentially reflects the fact that soft X-ray loops have significantly
higher pressure and density than the cooler EUV loops (see also scaling laws of base
pressure in Fig. 3.19). When we look at a typical DEM distribution of an active re-

Contribution	to	DEM	from	hot	loops	is	
orders	of	magnitude	higher	than	cool	loops!
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Figure 1.21: Differential emission measure distribution dEM(T )/dT of two active regions
(AR 93, AR 91) and two quiet Sun regions (QR 93, QR 91) measured by Brosius et al. (1996)
with SERTS data.

temperatures, the cooler ones visible in EUV and the hotter ones shining in soft X-rays.
Such a multi-temperature picture of the solar corona is shown in Plate 1, composed of
three images taken with different temperature filters with EIT/SoHO: a blue image at
1.0 MK (171 Å), a green image at 1.5 MK (195 Å), and a red image at 2.0 MK (284
Å). Following the color coding, one can clearly see in Plate 1 that the northern coro-
nal hole contains the coolest regions and that the temperature seems to increase with
altitude above the limb. In §3 we will learn that this apparent temperature increase
does not reflect a positive temperature gradient with height along individual field lines,
but merely results from the relative density weighting of cool and hot (hydrostatic)
temperature scale heights. Another effect that can be seen in Plate 1 is the law of ad-
ditive color mixing according to Isaac Newton: If blue, green, and red are mixed with
equal weighting, white results. The white color-coding in active regions seen in Plate 1
can therefore be taken as evidence that active regions contain comparable temperature
contributions from 1.0, 1.5, and 2.0 MK temperature loops.

The multi-temperature distribution of the corona can quantitatively be expressed
by the so-called differential emission measure distribution dEM(T )/dT , which is a
measure of the squared density ne(T ) integrated over the column depth along the line-
of-sight for any given temperature,

dEM(T )
dT

dT =
∫

n2
e(T, z)dz . (1.7.1)

This quantity can be measured with a broad range of EUV and soft X-ray lines at any
location (or line-of-sight) on the Sun. Such differential emission measure distributions
obtained from 4 different locations are shown in Fig. 1.21, two in quiet Sun regions
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Fig. 3.— AIA images in 4 wavelength-channels at the time for which the RHESSI spectrum was

fitted. 30%, 50%, and 70% contours from a RHESSI CLEAN image at 6-12 keV are given in red.
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Fig. 7.— Left: Comparison of DEMs from different methods: DEM from fit with one ξκ(T ) to

RHESSI data (light-blue dashed); DEM from simultaneous fit of RHESSI and AIA with two ξκ(T )s

(ξhotκ (T ), blue dashed line and ξcoldκ (T ), green dashed line, compare Figure 6). The red line gives

the sum of the two fits. AIA loci-curves are indicated near the top of the plot. The grey area

indicates the DEM (with confidence range) from AIA data, only, found by regularized inversion.

Right: ⟨nV F (E)⟩ obtained from the simultaneous fit of AIA and RHESSI data (red). The dotted

black line and dashed light-blue lines give ⟨nV F (E)⟩ from thin kappa and from a single ξκ(T ) fitted

to RHESSI data.

Battaglia et	al	2015



DEM	with	broad	T	distribution,	why?
3.5. LOOP LINE-OF-SIGHT INTEGRATION 91

Bright Loop + K-Corona

105 106 107
1019

1020

1021

1022

1023

dE
M

(T
)/

dT
’

K-Corona

Bright loop

Faint Loop + K-Corona

105 106 107
1019

1020

1021

1022

1023

dE
M

(T
)/

dT
’

K-Corona

Faint loop

100 Loops + K-Corona

105 106 107

Temperature  log(T)

1019

1020

1021

1022

1023

dE
M

(T
)/

dT
’

K-Corona

100 loops

Figure 3.17: Simulations of the differential emission measure distribution dEM(T )/dT (right
panels) and emission measure maps EM(x, y) (left panels) for a bright loop (top panels), a faint
loop (middle panels), and a statistical distribution of 100 loops (bottom panels). The emission
measure of the diffuse K-corona is also added (dashed line in right panels). The greyscale is
logarithmic, with maximum contrast in the range of EM = 0.8 − 1.0 × 1028 cm−5. The
physical parameters are described in the text.

inclination, (3) cross-sectional variation, (4) instrumental temperature bandpass, etc.
Ideally, the simplest case would be a coronal loop above the limb with a vertical loop
plane, perpendicular to the line-of-sight, and a constant cross section. If the loop plane
appears at an angle to the line-of-sight, the angle ψ(xi, yi, zi) of each loop segment
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with	different	sizes,	temperature,	and	
density	

• Any	line	of	sight	would	inevitably	
encounter	many	of	these	loops	+	
background	K-corona

• A	broad	DEM	distribution	peaking	at	1-3	
MK	is	common	in	DEM	inversion	results



AR	loops	not	in	hydrostatic	equilibrium
• 40	loops	analyzed by	Aschwanden
et	al.	2000,	measure	intensity	vs.	
loop	length

• Infer	a	measured	scale-height	(𝜆n)
• Loops	selected	if	intensity	contrast	
is	significant	along	their	whole	
length

• But,	suppose	a	long	loop	is	in	
hydrostatic	equilibrium,	intensity	
decreases	substantially	from	
bottom	to	top	

• Long	loops	in	hydrostatic	
equilibrium	cannot	be	detected	
with	this	selection	criterion



AR	loops	not	in	hydrostatic	equilibrium
• Results:	only	a	few	loops	have	𝜆n~	𝜆o,	all	other	
loops	are	not	in	hydrostatic	equilibrium

No	long	loops	in	hydrostatic	
equilibrium	found	(as	
expected)

In	fact,	many	loops	are	not	
in	hydrostatic	equilibrium

𝜆 n
/𝜆

o



Are	AR	loops	in	hydrostatic	equilibrium?

How	active	region	
loops	look	like	in	
TRACE	171

How	they	would	look	
like	if	in	hydrostatic	
equilibrium	

Physicist



What’s	wrong?

• Maybe our assumption of hydrostatic 
equilibrium is not valid in the first place?

• OK, let’s consider hydrodynamic loops, 
starting from those with steady flows:  

𝜌
𝐷𝑣
𝐷𝑡 ≠ 0

𝜌
𝐷𝑣
𝐷𝑡 = 𝜌

𝜕𝑣
𝜕𝑡 + 𝜌𝑣

𝜕𝑣
𝜕𝑠



Dynamic	loops:	steady	flows

“Siphon”	flow Observed	by	SOHO/CDS

However,	impossible	to	distinguish	in	imaging	observations!



Observations	of	flows	in	AR	loops
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Table 4.2: Flow measurements in the corona (T > 0.5 MK).

Observer Instrument Wavelength Temperature Flow speed
Coronal holes:
Cushman & Rense (1976) rocket Si XI, 303 Å < 1.4 MK 13±5 km s−1

Mg X, 610 Å 1.1 MK 12±5 km s−1

Mg IX, 368 Å 1.0 MK 14±3 km s−1

Rottman et al. (1982) rocket Mg X, 625 Å 1.4 MK 12 km s−1

Orrall et al. (1983) rocket Mg X, 625 Å 1.4 MK 8 km s−1

Quiet Sun regions:
Hassler et al. (1991) rocket Ne VIII, 770 Å 0.6 MK 0±4 km s−1

Mariska & Dowdy (1992) Skylab Ne VII, 465 Å 0.5 MK 0±18 km s−1

Brekke et al. (1997b) Ne VIII, 770 Å 0.6 MK 5 ± 1.5 km s−1

Ne VIII, 770 Å 0.6 MK 6 ± 3 km s−1

Mg X, 625 Å 1.1 MK 6 ± 1.5 km s−1

Active regions, plages:
Mariska & Dowdy (1992) Skylab Ne VII, 465 Å 0.5 MK < 70 km s−1

Brekke (1993) HRTS Fe XII, 1242 Å 1.3 MK 7±4 km s−1

Above sunspots:
Neupert et al. (1992) SERTS Mg IX, 368 Å 1.1 MK 14±3 km s−1

Active region loops:
Brekke et al. (1997a) SoHO/CDS Mg IX, 368 Å 1.0 MK < 50 km s−1

SoHO/CDS Mg X, 624 Å 1.0 MK < 50 km s−1

SoHO/CDS Si XII, 520 Å 1.9 MK ≈ 25 km s−1

SoHO/CDS Fe XVI, 360 Å 2.7 MK ≈ 25 km s−1

Winebarger et al. (2001) TRACE Fe IX/X, 171 Å 1.0 MK 5 − 20 km s−1

Winebarger et al. (2002) SUMER Ne VIII, 770 Å 0.6 MK 40 km s−1

with numerical parameters A(T ) = 0.83, 1.2, ..., 0.68 and δ(T ) = 0.75, 0.73, ..., 0.93
in the temperature range of T = 1, 2, ..., 10 MK. An example of a temperature and
density solution is shown in Fig. 4.6, while a comparison of the critical limits sH(L)
from Serio et al. (1981), Aschwanden et al. (2001), and Winebarger et al. (2003b) are
shown in Fig. 4.7. As a rule of thumb, we can say that loops that are heated over a
scale height of less than a third of the loop half length are expected to be dynamically
unstable.

4.4 Observations of Flows in Coronal Loops

Before the advent of SoHO, most of the flow measurements were reported from the
chromosphere and transition region below temperatures of T <∼ 0.25 MK (e.g., see Ta-
ble II in Brekke et al. 1997b). In the hotter portions of the solar transition region, a
few flow velocities were reported in coronal holes (Table 4.2) from rocket flights in the
pre-SoHO era (Cushman & Rense 1976; Rottman et al. 1982; Orrall et al. 1983), of the
order of v= 8−16 km s−1. In quiet Sun regions, no significant flow speeds were found
(Hassler et al. 1991) or only very marginal ones in the order of ≈ 5 km s−1 (Brekke

Methods:	
• Spectroscopy:	Doppler	shifts	of	

spectral	lines
• Imaging:	Inhomogeneities in	

flowing	plasma
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A

C

B

Figure 4.8: Active region loop system above the east limb observed with SoHO/CDS in O V
on 1996 July 27, 10:00 UT. The Doppler-shifted line profiles (right frame) are measured at three
different spatial positions (A,B,C, left frame) (Brekke et al. 1997a).

et al. 1997b). Significant flow speeds, in the order of ≈ 5 − 50 km s−1, were discov-
ered in active region loops mainly with SoHO/CDS (Brekke et al. 1997a), but also with
SoHO/SUMER (Winebarger et al. 2002) and with TRACE (Winebarger et al. 2001). Is
is likely that flows exist in the majority of active region loops, but their measurement
is difficult with every existing method, because: (1) if spectrographs (such as CDS or
SUMER) are used, then the Doppler shift can only be measured along the line-of-sight
and may largely cancel out in images with insufficient spatial resolution, and (2) if
high-resolution imaging (such as TRACE) is used, then only inhomogeneities in flow-
ing plasmas can be tracked, while laminar flows appear indifferent to static loops. In
the following we describe some of the few existing coronal flow measurements.

SoHO/CDS measurements of high-speed velocities in active region loops were re-
ported by Brekke et al. (1997a), displaying large Doppler shifts of the O V, 629 Å line
at coronal locations in a loop system above the east limb (Fig. 4.8). At position A, a
blueshifted velocity of v≈ 60 km s−1 (towards the observer) was measured relative
to the quiet Sun line profile (Fig. 4.8, right). At the opposite loop side (at position
B) there is no evidence for significant flows. This asymmetry cannot be explained
by a uni-directional siphon flow, but possibly indicates a one-sided catastrophic cool-
ing with rapid downflow, or perhaps the positions A and B might even belong to two
different loops that cannot be discriminated in the CDS image. In a loop nearby (at lo-
cation C), a redshifted flow with a speed of v≈ 25 km s−1 was detected, which cannot

Brekke et	al	1997



Steady	flows:	adiabatic	solutions
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will be the case once the system settles into a steady-state equilibrium with no time
dependence (∂/∂t = 0). The hydrodynamic equations of a 1D loop with variable cross
section A(s) can be written in conservative form,

1
A

∂

∂s
(nvA) = 0 , (4.1.27)

mnv
∂v
∂s

= −∂p

∂s
+

∂pgrav

∂r
(
∂r

∂s
) , (4.1.28)

1
A

∂

∂s

(
nvA

[
εenth + εkin + εgrav

]
+ AFC

)
= EH − ER , (4.1.29)

where the kinetic energy εkin(s) is

εkin(s) =
1
2
mv2(s) , (4.1.30)

and the derivative of the gravitational potential dεgrav/ds is defined by Eqs. (3.1.3−5),

∂εgrav(s)
∂s

= − 1
n

∂pgrav

∂s
. (4.1.31)

We can verify that the energy equation in conservative form (Eq. 4.1.29) is equivalent
to the standard form of the energy equation (4.1.26) with the following few steps. Ig-
noring the cross-sectional dependence (i.e., A(s) = const), the continuity equation
(4.1.27) is ,

∂

∂s
(nv) = 0 . (4.1.32)

This implies that the total derivative d/ds in the energy equation (4.1.29) can be written
as a partial derivative of the energy terms,

∂

∂s
(nvε) = ε

∂

∂s
(nv) + nv

∂ε

∂s
= nv

∂ε

∂s
. (4.1.33)

In the same way, we can simplify the total derivative of the product (pv), because it
contains the product (nv) after inserting the pressure p = nkBT ,

∂

∂s
(pv) =

∂

∂s
(nvkBT ) = kBT

∂

∂s
(nv)+nv

∂

∂s
(kBT ) = nvkB

∂T

∂s
= mnv(γ−1)

∂e

∂s
,

(4.1.34)
where we expressed T in terms of the internal energy e from the definition of Eq. (4.1.13).
The energy equation in conservative form (Eq. 4.1.29), after inserting the definitions
of the enthalpy (Eq. 4.1.14), kinetic energy (Eq. 4.1.30), and gravity (Eq. 4.1.31), and
using the relation of the total derivative (Eq. 4.1.33), reads

v
(
mnγ

∂e

∂s
+ mnv

∂v
∂s

− ∂pgrav

∂s

)
= EH − ER − ∂FC

∂s
. (4.1.35)

Continuity	equation

Momentum	equation
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Substituting the momentum equation (Eq. 4.1.28),

mnv
∂v
∂s

− ∂pgrav

∂s
= −∂p

∂s
(4.1.36)

eliminates the term mv(∂v/∂s) in Eq. (4.1.35) and simplifies the energy equation to

mnvγ
∂e

∂s
− v

∂p

∂s
= EH − ER − ∂FC

∂s
. (4.1.37)

We can now insert v(∂p
∂s ) = ∂

∂s(pv) − p∂v
∂s and make use of Eq. (4.1.34),

v
∂p

∂s
=

∂

∂s
(pv) − p

∂v
∂s

= mnv(γ − 1)
∂e

∂s
− p

∂v
∂s

, (4.1.38)

which inserted into the energy equation (4.1.37) yields the standard form of the (time-
independent) energy equation

mnv
∂e

∂s
+ p

∂v
∂s

= EH − ER − ∂FC

∂s
, (4.1.39)

corresponding to the notation given in Eq. (4.1.23). Thus, we have proven that the
standard form of the time-independent hydrodynamic energy equation (4.1.23) is iden-
tical to the conservative form given in (Eq. 4.1.29), and that both describe the same
thermodynamics. These are two of the most basic notations of the hydrodynamic en-
ergy equation, although a number of other variants can be found in the literature (e.g.,
see summaries in Priest 1982 or Bray et al. 1991). Solutions of the time-independent
hydrodynamic equations are also called steady-flow solutions which are described in
the next section.

4.2 Steady-Flow and Siphon-Flow Solutions

The hydrodynamic equations (4.1.21−23) describe relations between the four func-
tions of density n(s, t), pressure p(s, t), temperature T (s, t), and velocity v(s, T ),
which are generally space and time-dependent. We expect that dynamic processes
in loops will be smoothed out after a time scale that corresponds to the sound travel
time through the loop length. Especially for loops with longer lifetimes, we expect
that dynamic processes eventually settle into a near-stationary state, and it is therefore
useful to consider time-independent solutions (∂/∂t = 0), i.e., steady-flow solutions
for n(s), p(s), T (s), and v(s).

A first approach in solving the hydrostatic equations analytically is to ignore the
energy equation Eq. (4.1.23) and instead to assume an adiabatic process (i.e., a constant
entropy with ∂S/∂s = 0 in Eq. 4.1.8), for which

pρ−γ = const ,
d

ds

(
pρ−γ

)
= 0 , (4.2.1)

with γ being the polytropic index Eq. (4.1.10), the ratio of specific heats. Thus the
spatial derivative d/ds of this quantity along the loop coordinate s vanishes in adiabatic

Adiabatic	assumption

Consider	constant	gravity	(near	surface)	and	semi-circular	loops:
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or polytropic processes, and the expansion of the derivative yields the relation (using
ρ = mn),

∂p

∂s
=

(
γp

ρ

)
∂ρ

∂s
= c2

s
∂ρ

∂s
= mc2

s
∂n

∂s
, (4.2.2)

where the sound speed cs is defined by

cs =
√

γp

ρ
. (4.2.3)

Using the continuity equation (4.1.27) for variable cross sections A(s),

d

ds
(nvA) = 0 , (4.2.4)

and the expansion of the continuity equation, the pressure gradient ∂p/∂s (Eq. 4.2.2)
becomes

∂p

∂s
= mc2

s
∂n

∂s
= −mc2

s

(
n

v
∂v
∂s

+
n

A

∂A

∂s

)
. (4.2.5)

Using the approximation of constant gravity ∂pgrav/∂r ≈ −mng⊙ (Eq. 3.1.5) and
considering semi-circular loops, ∂r/∂s = cos (πs/2L) (Eq. 3.4.3), the momentum
equation (4.1.28) becomes,

mnv
∂v
∂s

= −∂p

∂s
− mng⊙ cos

( πs

2L

)
, (4.2.6)

Inserting the expression for the pressure gradient (4.2.5) then yields a differential equa-
tion for the flow speed v(s),

(
v − c2

s

v

)
∂v
∂s

= −g⊙ cos
( πs

2L

)
+

c2
s

A

∂A

∂s
. (4.2.7)

This solution is described in Cargill & Priest (1980) and Noci (1981), and is similar to
the solar wind solution of Parker (1958). The solutions of this differential equation are
depicted in Fig. 4.1. Similar solutions are also studied in Noci & Zuccarello (1983).

The solutions for the flow speed are symmetric on both sides of the loop. If the
initial flow speed at one footpoint is subsonic, the flow speed increases towards the
looptop (s = L), because the continuity equation, n(s)v(s) = const, requires a re-
ciprocal change to the density decrease with altitude. When the flow reaches sonic
speed at the looptop (dashed line), it will become supersonic beyond the summit. But
at some point a discontinuous jump must occur to connect the supersonic flow with the
subsonic boundary condition at the secondary footpoint and the supersonic flow will
be slowed down to subsonic speed. There are also a number of unphysical solutions
shown in Fig. 4.1 (dotted lines). Solutions with subsonic speed throughout the loop are
also called siphon flow solutions, which can be driven by a pressure difference between
both loop footpoints.

While the approach of replacing the energy equation by an adiabatic process reveals
the basic features of hydrodynamic solutions in terms of subsonic and supersonic flows
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depicted in Fig. 4.1. Similar solutions are also studied in Noci & Zuccarello (1983).

The solutions for the flow speed are symmetric on both sides of the loop. If the
initial flow speed at one footpoint is subsonic, the flow speed increases towards the
looptop (s = L), because the continuity equation, n(s)v(s) = const, requires a re-
ciprocal change to the density decrease with altitude. When the flow reaches sonic
speed at the looptop (dashed line), it will become supersonic beyond the summit. But
at some point a discontinuous jump must occur to connect the supersonic flow with the
subsonic boundary condition at the secondary footpoint and the supersonic flow will
be slowed down to subsonic speed. There are also a number of unphysical solutions
shown in Fig. 4.1 (dotted lines). Solutions with subsonic speed throughout the loop are
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While the approach of replacing the energy equation by an adiabatic process reveals
the basic features of hydrodynamic solutions in terms of subsonic and supersonic flows

We	can	derive	a	differential	equation	for	the	flow	speed	𝑣 𝑠 :



Steady	flows:	isothermal	case

Cargill	&	Priest	1980
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Figure 4.3: Scenario of a (uni-directional) siphon flow model, where an asymmetric pressure
drives an upflow at the left-hand footpoint, which flows through the loop and drains at the op-
posite (right-hand) footpoint. The flow is accelerating with height due to the density decrease
according to the continuity equation. The siphon flow may always be subsonic (left panel), or
become supersonic if the initial speed is high or the loop extends over several scale heights (right
panel). At the sonic point, the resulting shock wave produces a density compression that should
also be observable as a brightening of the emission measure near the looptop.

footpoints, possibly explaining the observed redshifts (v <∼ 5 km s−1) in some spectral
lines (C II, Si IV, C IV) formed in the network at transition region temperatures. Other
effects have been investigated for siphon flow models, such as nonequilibrium ioniza-
tion effects (Noci et al. 1989; Spadaro et al. 1990a,b, 1991, 1994; Peres et al. 1992),
but the same conclusions were confirmed, namely that asymmetric heating cannot ex-
plain large redshifts. Models for stationary siphon flows with shocks were calculated
by Orlando et al. (1995a,b), where they found that, (1) the shock position depends on
the volumetric heating rate of the loop, and (2) there exists a range of volumetric heat-
ing rates that produce two alternative positions for shock formation. Thus, observed
positions of shocks in coronal loops could potentially provide a diagnostic of heating
rates and flow profiles.

4.3 Thermal Stability of Loops

We considered hydrostatic solutions of loops (§ 3) as well as steady-flow solutions
(§4.2), which both assume an equilibrium state. An equilibrium state can be stable
or unstable, depending on whether the system returns to the same equilibrium state
after a disturbance or not. It is important to select the stable solutions amongst the
mathematically possible equilibria solutions, because unstable solutions will never
be observed in the real world. An introduction into instabilities in solar MHD plas-
mas is given in Priest (1982). Most of the instabilities occur at boundaries between
two plasma layers with different physical parameters. Examples in classical mechan-
ics are heavy fluids on top of lighter ones, or waves on water. Examples in plasma



Density	profiles	for	loops	with	
steady	flows
• Density	profiles	for	loops	with	
steady	flows	are	not	very	
different	from	the	hydrostatic	
case	up	to	the	sonic	point	
• So	what	causes	the	super-
hydrostatic	loops?
• Time-dependent	flows
• Energetics	must	be	taken	into	
account	(impulsive	and	
nonuniform heating	&	cooling)	

• Waves	or	magnetic	field	may	
play	a	role

𝑣(𝑠 = 0)
𝑐z

= 0.001

𝑣 = 0
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Figure 4.2: The flow speed v(s)/cs as a function of the loop coordinate s/R⊙ +1 for subsonic
steady-flow solutions, for a loop with a length of L = 200 Mm and a range of initial upflow
speeds v(s)/cs = 0.001, ..., 1. The asymptotic limit v=0 of the hydrostatic solution for the
density n(s) is shown with a thick solid line (bottom panel).

sections mainly affect the flow speed in a reciprocal way, as expected from the continu-
ity equation. The solutions for v(s), T (s), and n(s) calculated by Craig & McClymont
(1986), shown in Fig. 4.4, demonstrate that the temperature T (s) and density profiles
n(s) are not much different from the hydrostatic solutions in the presence of flows (see
also Fig. 4.2), even in the presence of asymmetric drivers. Mariska & Boris (1983) and
Klimchuk & Mariska (1988) also simulated flow solutions with asymmetric heating
sources in the loops and found that the density and temperature profiles were rather in-
sensitive to the location of the heating function. They found the highest flow speed v(s)
in locations that were bracketed by a localized coronal heating source or in converging

𝑣(𝑠 = 0)
𝑐z

= 1



Another	type	of	flow:	coronal	rain

Post-flare	coronal	rain	observed	by	SDO/AIA	304	on	2012	July	19



Radiative	loss	instability
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Figure 4.4: Siphon flow solutions of T (s) and v(s) in an asymmetrically heated loop [with
heating rate Q∗(s)]. Radiative loss R(s), conductive loss C(s), and enthalpy M(s) are also
shown (Craig & McClymont 1986).

physics are the (hydrodynamic) Rayleigh−Taylor instability, where a boundary be-
tween two plasmas of different densities and pressures is disturbed by the gravity force;
the Kruskal−Schwarzschild instability (or the hydromagnetic analog of the Rayleigh−
Taylor instability), where the plasma boundary is supported by a magnetic field; the
Kelvin−Helmholtz instability, where different flow speeds shear at both sides of the
boundary; the convective instability, where convection cells form due to a large tem-
perature gradient; or the radiatively driven thermal instability, where the radiative loss
rate leads to a thermal instability in the case of insufficient thermal conduction.

4.3.1 Radiative Loss Instability

Parker (1953) already pointed out the thermal instability of coronal plasmas as a conse-
quence of the dependence of the radiative loss function on the density and temperature.
A simple derivation of the radiatively driven thermal instability, which occurs in the
case of insufficient thermal conduction, is given in Priest (1982, p. 277). If we ne-
glect thermal conduction (∇FC) and flows (v = 0), and assume a constant pressure
(Dp/Dt = 0) in the time-dependent energy equation (4.1.19), we have

cpρ
∂T

∂t
= EH − ER . (4.3.1)

Defining a heating rate h per unit volume (that is proportional to the number density),

EH = hρ , (4.3.2)

Heating Radiative	loss

Let’s	ignore	thermal	conduction	loss	for	now:
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Figure 4.5: The temperature evolution T (t) of a loop after a small perturbation by −5% from
the equilibrium situation (thick line): for a stable loop (thin line: with a powerlaw slope of a > 1

in the radiative loss function), and an unstable loop (dashed line: with a < 1).

and approximating the radiative loss function ER(s) with a powerlaw function in tem-
perature,

ER = n2Λ(T ) ≈ χρ2T α , (4.3.3)

the energy equation reads (Priest 1982, Eq. 7.69),

cp
∂T

∂t
= h − χρT α . (4.3.4)

Assuming a constant pressure, p(s, t) ≈ p0 = const, the mass density ρ can be substi-
tuted by the temperature T ,

ρ =
mp0

kBT
. (4.3.5)

The heating constant h can be constrained from the equilibrium situation (from Eq. 4.3.4)
and dT/dt = 0,

0 = h − χρ0T
α
0 (s) , (4.3.6)

where the mass density is ρ0 = mp0/kBT0. Substituting h into Eq. (4.3.4) and ρ from
Eq. (4.3.5) then yields an equation for the temperature evolution,

cp
∂T

∂t
= χρ0T

α
0

(
1 − T α−1

T α−1
0

)
. (4.3.7)

From this evolutionary equation, the stability conditions for a purely radiatively
cooling loop can easily be seen. If the exponent α < 1, a decrease in temperature (T <
T0) makes the right-hand side of Eq. (4.3.7) negative, and thus the cooling continues
(with the same sign as ∂T/∂t on the left-hand side), so we have a thermal instability,
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Figure 4.4: Siphon flow solutions of T (s) and v(s) in an asymmetrically heated loop [with
heating rate Q∗(s)]. Radiative loss R(s), conductive loss C(s), and enthalpy M(s) are also
shown (Craig & McClymont 1986).

physics are the (hydrodynamic) Rayleigh−Taylor instability, where a boundary be-
tween two plasmas of different densities and pressures is disturbed by the gravity force;
the Kruskal−Schwarzschild instability (or the hydromagnetic analog of the Rayleigh−
Taylor instability), where the plasma boundary is supported by a magnetic field; the
Kelvin−Helmholtz instability, where different flow speeds shear at both sides of the
boundary; the convective instability, where convection cells form due to a large tem-
perature gradient; or the radiatively driven thermal instability, where the radiative loss
rate leads to a thermal instability in the case of insufficient thermal conduction.

4.3.1 Radiative Loss Instability

Parker (1953) already pointed out the thermal instability of coronal plasmas as a conse-
quence of the dependence of the radiative loss function on the density and temperature.
A simple derivation of the radiatively driven thermal instability, which occurs in the
case of insufficient thermal conduction, is given in Priest (1982, p. 277). If we ne-
glect thermal conduction (∇FC) and flows (v = 0), and assume a constant pressure
(Dp/Dt = 0) in the time-dependent energy equation (4.1.19), we have

cpρ
∂T

∂t
= EH − ER . (4.3.1)

Defining a heating rate h per unit volume (that is proportional to the number density),

EH = hρ , (4.3.2)where	h	is	the	(constant)	heating	rate	per	unit	volume

Assume	constant	pressure	and	initially	thermal	equilibrium
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and approximating the radiative loss function ER(s) with a powerlaw function in tem-
perature,

ER = n2Λ(T ) ≈ χρ2T α , (4.3.3)

the energy equation reads (Priest 1982, Eq. 7.69),

cp
∂T

∂t
= h − χρT α . (4.3.4)

Assuming a constant pressure, p(s, t) ≈ p0 = const, the mass density ρ can be substi-
tuted by the temperature T ,

ρ =
mp0

kBT
. (4.3.5)

The heating constant h can be constrained from the equilibrium situation (from Eq. 4.3.4)
and dT/dt = 0,

0 = h − χρ0T
α
0 (s) , (4.3.6)

where the mass density is ρ0 = mp0/kBT0. Substituting h into Eq. (4.3.4) and ρ from
Eq. (4.3.5) then yields an equation for the temperature evolution,

cp
∂T

∂t
= χρ0T

α
0

(
1 − T α−1

T α−1
0

)
. (4.3.7)

From this evolutionary equation, the stability conditions for a purely radiatively
cooling loop can easily be seen. If the exponent α < 1, a decrease in temperature (T <
T0) makes the right-hand side of Eq. (4.3.7) negative, and thus the cooling continues
(with the same sign as ∂T/∂t on the left-hand side), so we have a thermal instability,

=	0,	where
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and approximating the radiative loss function ER(s) with a powerlaw function in tem-
perature,

ER = n2Λ(T ) ≈ χρ2T α , (4.3.3)

the energy equation reads (Priest 1982, Eq. 7.69),
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Assuming a constant pressure, p(s, t) ≈ p0 = const, the mass density ρ can be substi-
tuted by the temperature T ,

ρ =
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kBT
. (4.3.5)

The heating constant h can be constrained from the equilibrium situation (from Eq. 4.3.4)
and dT/dt = 0,

0 = h − χρ0T
α
0 (s) , (4.3.6)

where the mass density is ρ0 = mp0/kBT0. Substituting h into Eq. (4.3.4) and ρ from
Eq. (4.3.5) then yields an equation for the temperature evolution,

cp
∂T

∂t
= χρ0T

α
0

(
1 − T α−1

T α−1
0

)
. (4.3.7)

From this evolutionary equation, the stability conditions for a purely radiatively
cooling loop can easily be seen. If the exponent α < 1, a decrease in temperature (T <
T0) makes the right-hand side of Eq. (4.3.7) negative, and thus the cooling continues
(with the same sign as ∂T/∂t on the left-hand side), so we have a thermal instability,
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and approximating the radiative loss function ER(s) with a powerlaw function in tem-
perature,

ER = n2Λ(T ) ≈ χρ2T α , (4.3.3)

the energy equation reads (Priest 1982, Eq. 7.69),

cp
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= h − χρT α . (4.3.4)

Assuming a constant pressure, p(s, t) ≈ p0 = const, the mass density ρ can be substi-
tuted by the temperature T ,

ρ =
mp0

kBT
. (4.3.5)

The heating constant h can be constrained from the equilibrium situation (from Eq. 4.3.4)
and dT/dt = 0,

0 = h − χρ0T
α
0 (s) , (4.3.6)

where the mass density is ρ0 = mp0/kBT0. Substituting h into Eq. (4.3.4) and ρ from
Eq. (4.3.5) then yields an equation for the temperature evolution,
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From this evolutionary equation, the stability conditions for a purely radiatively
cooling loop can easily be seen. If the exponent α < 1, a decrease in temperature (T <
T0) makes the right-hand side of Eq. (4.3.7) negative, and thus the cooling continues
(with the same sign as ∂T/∂t on the left-hand side), so we have a thermal instability,

𝛼 < 1: once	𝑇 < 𝑇),	𝑐m
Bo
BD
< 0,	cooling	continues	 Instability!



Radiative	loss	instability
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Coronal	rain:	catastrophic	cooling	process
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And	of	course,	evaporation	flows	in	
flare	loops

Milligan	2011

Hinode/EIS



Summary

• Imaging	observations	of	loops	are	highly	weighted	
by	loop	density	and	instrument	response
• Hydrostatic	approximation	for	loops	works	
surprisingly	well	in	some	cases
• Non-hydrostatic	loops	are	important,	esp.	in	active	
regions	and	flares
• Yet	simple	approximations	greatly	help	us	
understand	the	observations!


